Аннотация
In this paper, we introduce and study the notion of a Rota-Baxter operator on a cocommutative Hopf algebra that generalizes notions of a Rota-Baxter operator on a group and a Rota-Baxter operator of weight 1 on a Lie algebra. We show that every Rota-Baxter operator (of weight 1) on a Lie algebra g (resp., on a group G) can be uniquely extended to a Rota-Baxter operator on the universal enveloping algebra U(g) (resp., on the group algebra F[G]).
Язык оригинала | английский |
---|---|
Страницы (с-по) | 39-56 |
Число страниц | 18 |
Журнал | Journal of Algebra |
Том | 582 |
DOI | |
Состояние | Опубликовано - 15 сент. 2021 |
Предметные области OECD FOS+WOS
- 1.01 МАТЕМАТИКА