Аннотация
It has been known for more than a decade that, if a self-similar arc γ can be shifted along itself by similarity maps that are arbitrarily close to identity, then γ is a straight line segment. We extend this statement to the class of self-affine arcs and prove that each self-affine arc admitting affine shifts that may be arbitrarily close to identity is a segment of a parabola or a straight line.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 81-84 |
Число страниц | 4 |
Журнал | Doklady Mathematics |
Том | 103 |
Номер выпуска | 2 |
DOI | |
Состояние | Опубликовано - мар 2021 |
Предметные области OECD FOS+WOS
- 1.01 МАТЕМАТИКА