Reducing the deterioration of sentiment analysis results due to the time impact

Yuliya Rubtsova

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

6 Цитирования (Scopus)


The research identifies and substantiates the problem of quality deterioration in the sentiment classification of text collections identical in composition and characteristics, but staggered over time. It is shown that the quality of sentiment classification can drop up to 15% in terms of the F-measure over a year and a half. This paper presents three different approaches to improving text classification by sentiment in continuously-updated text collections in Russian: using a weighing scheme with linear computational complexity, adding lexicons of emotional vocabulary to the feature space and distributed word representation. All methods are compared, and it is shown which method is most applicable in certain cases. Experiments comparing the methods on sufficiently representative text collections are described. It is shown that suggested approaches could reduce the deterioration of sentiment classification results for collections staggered over time.

Язык оригиналаанглийский
Номер статьи184
Число страниц12
ЖурналInformation (Switzerland)
Номер выпуска8
СостояниеОпубликовано - 25 июл 2018


Подробные сведения о темах исследования «Reducing the deterioration of sentiment analysis results due to the time impact». Вместе они формируют уникальный семантический отпечаток (fingerprint).