Recovering density and speed of sound coefficients in the 2d hyperbolic system of acoustic equations of the first order by a finite number of observations

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

Аннотация

We consider the coefficient inverse problem for the first-order hyperbolic system, which describes the propagation of the 2D acoustic waves in a heterogeneous medium. We recover both the denstity of the medium and the speed of sound by using a finite number of data measurements. We use the second-order MUSCL-Hancock scheme to solve the direct and adjoint problems, and apply optimization scheme to the coefficient inverse problem. The obtained functional is minimized by using the gradient-based approach. We consider different variations of the method in order to obtain the better accuracy and stability of the appoach and present the results of numerical experiments.

Язык оригиналаанглийский
Номер статьи199
Страницы (с-по)1-13
Число страниц13
ЖурналMathematics
Том9
Номер выпуска2
DOI
СостояниеОпубликовано - 2 янв 2021

Предметные области OECD FOS+WOS

  • 1.01 МАТЕМАТИКА

Fingerprint Подробные сведения о темах исследования «Recovering density and speed of sound coefficients in the 2d hyperbolic system of acoustic equations of the first order by a finite number of observations». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать