Recognition of hyperspectral images with use of cluster ensemble and semisupervised learning

Vladimir B. Berikov, Igor A. Pestunov, Nikita M. Karaev, Ankit Tewari

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

Аннотация

We suggest a method for hyperspectral image analysis on the basis of semi-supervised learning. The main idea is to divide the process of training of a classifier into two stages. First of all, with usage of cluster ensemble algorithms, variants of image segmentation are obtained. On their basis, the averaged co-Association matrix is calculated. On the second stage, a classifier is constructed on labeled pixels using similarity based learning algorithms with the given matrix as input. An example of the application of the method for analysis of hyperspectral images is given. It is shown that the suggested algorithm is more robust to noise than the standard support vector machine method.

Язык оригиналаанглийский
Страницы (с-по)60-64
Число страниц5
ЖурналCEUR Workshop Proceedings
Том2033
СостояниеОпубликовано - 2017

Fingerprint

Подробные сведения о темах исследования «Recognition of hyperspectral images with use of cluster ensemble and semisupervised learning». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать