Quasilinear integrodifferential Riccati-type equations

V. L. Vaskevich, A. I. Shcherbakov

Результат исследования: Публикации в книгах, отчётах, сборниках, трудах конференцийглава/разделнаучнаярецензирование

Аннотация

Equations under study have the form in which the time derivative of an unknown function u(t, k) is expressed by the linear combination of u(t, k) and a double integral over the integration domain P(k) with respect to the spatial variables (k1, k2). The double integral is from the weighted quadratic expression of u(t, k1) and u(t, k2). The coefficient a(t) of the linear part of the equation is a continuous function; the integration domain P(k) is unbounded and does not depend on time, but depends on the spatial variable k. The properties of solutions to the equation are determined by the kernel W(k, k1, k2) of the integral operator in the right-hand side of the equation, as well as the behavior of the unknown solution as k tends to zero and as k tends to infinity. The kernel W(k, k1, k2) of the double integral is a continuous function in the first octant of the three-dimensional real space and satisfies some additional conditions. We introduce special functional classes associated with the equation under study and consider the Cauchy problem with initial data on the half-axis k > 0. In application to the Cauchy problem, we consider the method of successive approximations and estimate the successive approximations quality in dependence on the number of the iterated solution.

Язык оригиналаанглийский
Название основной публикацииContinuum Mechanics, Applied Mathematics and Scientific Computing
Подзаголовок основной публикацииGodunov's Legacy: A Liber Amicorum to Professor Godunov
ИздательSpringer International Publishing AG
Страницы375-380
Число страниц6
ISBN (электронное издание)9783030388706
ISBN (печатное издание)9783030388690
DOI
СостояниеОпубликовано - 3 апр. 2020
Опубликовано для внешнего пользованияДа

Предметные области OECD FOS+WOS

  • 1.03 ФИЗИЧЕСКИЕ НАУКИ И АСТРОНОМИЯ
  • 1.01 МАТЕМАТИКА
  • 2.05 ТЕХНОЛОГИЯ МАТЕРИАЛОВ

Fingerprint

Подробные сведения о темах исследования «Quasilinear integrodifferential Riccati-type equations». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать