Quasilinear integrodifferential Bernoulli-type equations

Результат исследования: Научные публикации в периодических изданияхстатья по материалам конференции

Аннотация

The equations considered in this article have the form in which the time derivative of the unknown function is expressed as a double integral over the space variables of a weighted quadratic expression of the sought function. The domain of integration is unbounded and does not depend on time but depends on the space variable. We study the Cauchy problem in the function classes accompanying the equation with initial data on the positive half-line. In application to this problem, the convergence of the successive approximation method is justified. An estimate is given of the quality of the approximation depending on the number of the iterated solution. It is proved that, on some finite time interval, the posed Cauchy problem has at most one solution in the accompanying function class. An existence theorem is proved in the same class.

Язык оригиналаанглийский
Номер статьи012075
Число страниц4
ЖурналJournal of Physics: Conference Series
Том1391
Номер выпуска1
DOI
СостояниеОпубликовано - 13 дек 2019
Событие8th International Conference on Mathematical Modeling in Physical Science, IC-MSQUARE 2019 - Bratislava, Словакия
Продолжительность: 26 авг 201929 авг 2019

Fingerprint Подробные сведения о темах исследования «Quasilinear integrodifferential Bernoulli-type equations». Вместе они формируют уникальный семантический отпечаток (fingerprint).

  • Цитировать