Аннотация
Transport properties of highly mobile two-dimensional (2D) electrons in symmetric GaAs quantum wells with two populated subbands placed in tilted magnetic fields are studied at high temperatures. Quantum positive magnetoresistance (QPMR) and magneto-intersubband resistance oscillations (MISO) are observed in quantizing magnetic fields, B¥, applied perpendicular to the 2D layer. QPMR displays contributions from electrons with considerably different quantum lifetimes, τq(1,2), confirming the presence of two subbands in the studied system. MISO evolution with B¥ agrees with the obtained quantum scattering times only if an additional reduction of the MISO magnitude is applied at small magnetic fields. This indicates the presence of a yet unknown mechanism leading to MISO damping. Application of an in-plane magnetic field produces a strong decrease of both QPMR and MISO magnitude. The reduction of QPMR is explained by spin splitting of Landau levels indicating a g factor, g≈0.4, which is considerably less than the g factor found in GaAs quantum well with a single subband populated. In contrast to QPMR, the decrease of MISO magnitude is largely related to the in-plane magnetic field induced entanglement between quantum levels in different subbands that, in addition, increases the MISO period.
Язык оригинала | английский |
---|---|
Номер статьи | 045436 |
Число страниц | 11 |
Журнал | Physical Review B |
Том | 96 |
Номер выпуска | 4 |
DOI | |
Состояние | Опубликовано - 28 июл 2017 |