Quandle cohomology, extensions and automorphisms

Valeriy Bardakov, Mahender Singh

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

Аннотация

A quandle is an algebraic system with a binary operation satisfying three axioms modelled on the three Reidemeister moves of planar diagrams of links in the 3-space. The paper establishes new relationship between cohomology, extensions and automorphisms of quandles. We derive a four term exact sequence relating quandle 1-cocycles, second quandle cohomology and certain group of automorphisms of an abelian extension of quandles. A non-abelian counterpart of this sequence involving dynamical cohomology classes is also established, and some applications to lifting of quandle automorphisms are given. Viewing the construction of the conjugation, the core and the generalised Alexander quandle of a group as an adjoint functor of some appropriate functor from the category of quandles to the category of groups, we prove that these functors map extensions of groups to extensions of quandles. Finally, we construct some natural group homomorphisms from the second cohomology of a group to the second cohomology of its core and conjugation quandles. (C) 2021 Elsevier Inc. All rights reserved.

Язык оригиналаанглийский
Страницы (с-по)558-591
Число страниц34
ЖурналJournal of Algebra
Том585
DOI
СостояниеОпубликовано - 1 ноя 2021

Предметные области OECD FOS+WOS

  • 1.01 МАТЕМАТИКА

Fingerprint

Подробные сведения о темах исследования «Quandle cohomology, extensions and automorphisms». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать