Аннотация
We study quadratic Lie conformal superalgebras associated with Novikov superalgebras. For every Novikov superalgebra.V; ı/, we construct an enveloping differential Poisson superalgebra U.V/with a derivation d such that u o v = ud(v) and 1u; v} u o v -.(-1)|u||v| vo u for u; v ∈ V. The latter means that the commutator Gelfand-Dorfman superalgebra of V is special. Next, we prove that every quadratic Lie conformal superalgebra constructed on a finite-dimensional special Gelfand-Dorfman superalgebra has a finite faithful conformal representation. This statement is a step towards a solution of the following open problem: whether a finite Lie conformal (super)algebra has a finite faithful conformal representation.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 1485-1500 |
Число страниц | 16 |
Журнал | Journal of Noncommutative Geometry |
Том | 15 |
Номер выпуска | 4 |
DOI | |
Состояние | Опубликовано - 2021 |
Предметные области OECD FOS+WOS
- 1.01 МАТЕМАТИКА
- 1.01.UR ФИЗИКА, МАТЕМАТИЧЕСКАЯ
- 1.01.PN МАТЕМАТИКА, ПРИКЛАДНАЯ