Аннотация
We study the problem of characterizing clones on a three-element set by hyperidentities. We prove that there exists a hyperidentity separating any clone of quasilinear functions defined on the set {0, 1, 2} each of them is either a selector or such that all its values belong to {0, 1} from any noncreative clone constituted by such functions incomparable with the initial clone.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 644-648 |
Число страниц | 5 |
Журнал | Siberian Mathematical Journal |
Том | 58 |
Номер выпуска | 4 |
DOI | |
Состояние | Опубликовано - 1 июл 2017 |