Prognostication of Incidence and Severity of Ischemic Stroke in Hot Dry Climate From Environmental and Non-Environmental Predictors

Yauhen Statsenko, Tetiana Habuza, Ekaterina Fursa, Anna Ponomareva, Taleb M. Almansoori, Fatmah Al Zahmi, Klaus Neidl Van Gorkom, Vasyl Laver, Tatsiana Talako, Miklos Szolics, Alireza Dehdashtian, Jamal Al Koteesh, Milos Ljubisavljevic

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

Аннотация

Background: Recently, rapid fluctuations of ambient temperature were found to be associated with hospital admission for cardiovascular diseases in general and the ischemic stroke in particular. Objective: to test if climatic factors predict the incidence of stroke reliably and to study the predictive potential of risk factors for a stroke. Materials and methods: In a retrospective design, we studied 566 patients admitted to the stroke unit in 2016-2019. A distributed lag nonlinear model was used to explore immediate and delayed effects of weather and clinicodemographic risk factors on the stroke incidence. Supervised machine learning was used to build models predictive of the mRS score. We assessed model performance by calculating R2 , mean absolute error and root-mean-square error. Results and conclusions: We found a non-correlation between the weather parameters and statistics on stroke. The disparities in their trends lead us to investigate behind time effects of the environment with distributed lag models and a concordant impact of all the settings - with machine learning models. If categorized into two classes by severity and functional outcomes, the cases have few disparities in the weather parameters within a week before the stroke onset. In contrast to the groups classified by severity, the ones grouped by outcomes have a significant difference in age, nationality, the presence of background diseases and smoking status. We ranked environmental and individual risk factors by the information gain that they provide to the models. Inclusion of the weather parameters into the machine learning model predicting the mRS score provides a slight boost in performance.

Язык оригиналаанглийский
Страницы (с-по)58268-58286
Число страниц19
ЖурналIEEE Access
Том10
DOI
СостояниеОпубликовано - 2022
Опубликовано для внешнего пользованияДа

Предметные области OECD FOS+WOS

  • 2.05 ТЕХНОЛОГИЯ МАТЕРИАЛОВ
  • 1.02 КОМПЬЮТЕРНЫЕ И ИНФОРМАЦИОННЫЕ НАУКИ
  • 2.11 ПРОЧИЕ ТЕХНОЛОГИИ

Fingerprint

Подробные сведения о темах исследования «Prognostication of Incidence and Severity of Ischemic Stroke in Hot Dry Climate From Environmental and Non-Environmental Predictors». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать