Polyhedral complementarity and fixed points problem of decreasing regular mappings on simplex

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

1 Цитирования (Scopus)


A new development of polyhedral complementarity investigation is presented. This consideration extends the author's original approach to the equilibrium problem in a linear exchange model and its variations. Two polyhedral complexes in duality and a cells correspondence are given. The problem is to find a point of intersection of the cells corresponding each other. This is a natural generalization of linear complementarity problem. Now we study arising point-to-set mappings without the original exchange model. The potentiality for a special class of regular mappings is proved. As a result the fixed point problem of mapping reduces to an optimization problem. Two finite algorithms for this problem are considered.

Язык оригиналаанглийский
Страницы (с-по)511-516
Число страниц6
ЖурналCEUR Workshop Proceedings
СостояниеОпубликовано - 2017