Аннотация
The paper deals with initial-boundary value problems for linear non-autonomous first order hyperbolic systems whose solutions stabilize to zero in a finite time. We prove that problems in this class remain exponentially stable in L2 as well as in C1 under small bounded perturbations. To show this for C1, we prove a general smoothing result implying that the solutions to the perturbed problems become eventually C1-smooth for any L2-initial data.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 838-862 |
Число страниц | 25 |
Журнал | Journal of Mathematical Analysis and Applications |
Том | 460 |
Номер выпуска | 2 |
DOI | |
Состояние | Опубликовано - 15 апр 2018 |