Аннотация
We consider binomial functions over a finite field of order 2n. Some necessary condition is found for such a binomial function to be a permutation. It is proved that there are no permutation binomial functions in the case that 2n − 1 is prime. Permutation binomial functions are constructed in the case when n is composite and found for n ≥ 8.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 694-705 |
Число страниц | 12 |
Журнал | Journal of Applied and Industrial Mathematics |
Том | 12 |
Номер выпуска | 4 |
DOI | |
Состояние | Опубликовано - 1 окт. 2018 |