Partial Invariance and Problems with Free Boundaries

Результат исследования: Публикации в книгах, отчётах, сборниках, трудах конференцийглава/разделнаучнаярецензирование

Аннотация

The foundations of group analysis of differential equations were laid by S. Lie. This theory was essentially developed in works of L. V. Ovsiannikov, N. H. Ibragimov, their students, and followers. Notion of the partially invariant solution to the system of differential equations (Ovsiannikov 1964) substantially extended possibilities of exact solutions construction for multidimensional systems of differential equations admitting the Lie group. It is important to note that fundamental equations of continuum mechanics and physics fall in this class a priori as invariance principle of space, time, and moving medium there with respect to some group (Galilei, Lorenz, and others) are situated in the base of their derivation. It should be noticed that classical group analysis of differential equations has a local character. To apply this approach to initial boundary value problems, one need to provide the invariance properties of initial and boundary conditions. Author (1973) studied these properties for free boundary problems to the Navier–Stokes equations. Present chapter contains an example of partially invariant solution of these equations describing the motion of a rotating layer bounded by free surfaces.

Язык оригиналаанглийский
Название основной публикацииNonlinear Physical Science
РедакторыAlbert C. J. Luo, Rafail K. Gazizov
ИздательSpringer Science and Business Media Deutschland GmbH
Глава9
Страницы251-267
Число страниц17
Издание1
ISBN (электронное издание)978-981-16-4683-6
ISBN (печатное издание)978-981-16-4682-9, 978-981-16-4685-0
DOI
СостояниеОпубликовано - 2021

Серия публикаций

НазваниеNonlinear Physical Science
ISSN (печатное издание)1867-8440
ISSN (электронное издание)1867-8459

Предметные области OECD FOS+WOS

  • 1.01 МАТЕМАТИКА

Fingerprint

Подробные сведения о темах исследования «Partial Invariance and Problems with Free Boundaries». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать