Аннотация
We study a problem that models safely routing a convoy through a transportation network, where any vertex adjacent to the travel path of the convoy requires additional precaution: Given a graph G = (V,E), two vertices s, t ∈ V, and two integers k, ℓ, we search for a simple s-tpath with at most k vertices and at most ℓ neighbors. We study the problem in two types of transportation networks: graphs with small crossing number, as formed by road networks, and tree-like graphs, as formed by waterways. For graphs with constant crossing number, we provide a subexponential 2O(√n)-time algorithm and prove a matching lower bound. We also show a polynomial-time data reduction algorithm that reduces any problem instance to an equivalent instance (a so-called problem kernel) of size polynomial in the vertex cover number of the input graph. In contrast, we show that the problem in general graphs is hard to preprocess. Regarding tree-like graphs, we obtain a 2O(tw) · ℓ2 · n-time algorithm for graphs of treewidth tw, show that there is no problem kernel with size polynomial in tw, yet show a problem kernel with size polynomial in the feedback edge number of the input graph.
Язык оригинала | английский |
---|---|
Название основной публикации | 18th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems, ATMOS 2018 |
Издатель | Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing |
Том | 65 |
ISBN (печатное издание) | 9783959770965 |
DOI | |
Состояние | Опубликовано - 1 авг. 2018 |
Событие | 18th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems, ATMOS 2018 - Helsinki, Финляндия Продолжительность: 23 авг. 2018 → 24 авг. 2018 |
Конференция
Конференция | 18th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems, ATMOS 2018 |
---|---|
Страна/Tерритория | Финляндия |
Город | Helsinki |
Период | 23.08.2018 → 24.08.2018 |
Предметные области OECD FOS+WOS
- 1.01 МАТЕМАТИКА
- 5.07 СОЦИАЛЬНАЯ И ЭКОНОМИЧЕСКАЯ ГЕОГРАФИЯ
ГРНТИ
- 27.45 Комбинаторный анализ. Теория графов