Parallel Variable-Triangular Iterative Methods in Krylov Subspaces

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

Аннотация

The paper considers parallel preconditioned iterative methods in Krylov subspaces for solving systems of linear algebraic equations with large sparse symmetric positive-definite matrices resulting from grid approximations of multidimensional problems. For preconditioning, generalized block algorithms of symmetric successive over-relaxation or incomplete factorization type with matching row sums are used. Preconditioners are based on variable-triangular matrix factors with multiple alternations in triangular structure. For three-dimensional grid algebraic systems, methods are based on nested factorizations, as well as on two-level iterative processes. Successive approximations in Krylov subspaces are computed by applying a family of conjugate direction algorithms with various orthogonality and variational properties, including preconditioned conjugate gradient, conjugate residual, and minimal error methods.

Язык оригиналаанглийский
Страницы (с-по)281-290
Число страниц10
ЖурналJournal of Mathematical Sciences (United States)
Том255
Номер выпуска3
DOI
СостояниеОпубликовано - июн 2021

Предметные области OECD FOS+WOS

  • 1.01 МАТЕМАТИКА

Fingerprint Подробные сведения о темах исследования «Parallel Variable-Triangular Iterative Methods in Krylov Subspaces». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать