Optimal control of rigidity parameters of thin inclusions in composite materials

A. M. Khludnev, L. Faella, C. Perugia

    Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

    8 Цитирования (Scopus)

    Аннотация

    In the paper, an equilibrium problem for an elastic body with a thin elastic and a volume rigid inclusion is analyzed. It is assumed that the thin inclusion conjugates with the rigid inclusion at a given point. Moreover, a delamination of the thin inclusion is assumed. Inequality type boundary conditions are considered at the crack faces to prevent a mutual penetration between the faces. A passage to the limit is justified as the rigidity parameter of the thin inclusion goes to infinity. The main goal of the paper is to analyze an optimal control problem with a cost functional characterizing a deviation of the displacement field from a given function. A rigidity parameter of the thin inclusion serves as a control function. An existence theorem to this problem is proved.

    Язык оригиналаанглийский
    Номер статьи47
    Число страниц12
    ЖурналZeitschrift fur Angewandte Mathematik und Physik
    Том68
    Номер выпуска2
    DOI
    СостояниеОпубликовано - 1 апр 2017

    Fingerprint

    Подробные сведения о темах исследования «Optimal control of rigidity parameters of thin inclusions in composite materials». Вместе они формируют уникальный семантический отпечаток (fingerprint).

    Цитировать