Аннотация

Modern aviation industry solves the problem of developing multifunction engines capable of flying both at subsonic and supersonic speeds. An important part in such engines is a variable area nozzle, which allows varying the geometry of the engine exhaust unit and, accordingly, its technical characteristics. This study touches upon an computer vision based optical noncontact method for reconstructing a nozzle shape. The reconstruction requires data recorded by two optical three-dimensional recorders directed toward the inner part of the nozzle when the engine is subjected to ground tests. The diagnosis is complicated by the presence of a hot jet being in the way of the sensor vision, the regime-dependent variation of the nozzle glow brightness, and intense mechanical vibrations. The performed bench tests confirm the efficiency of the proposed method. According to their results, in a low-gas regime, the standard deviation of the diagnosed diameters of the exhaust unit and critical sections for each frame does not exceed 0.3% of the corresponding sizes. The data obtained as a result of this diagnosis can be taken into account when upgrading the exhaust unit of the engine and the thrust control system of a gas turbine engine.

Язык оригиналаанглийский
Страницы (с-по)612-617
Число страниц6
ЖурналOptoelectronics, Instrumentation and Data Processing
Том55
Номер выпуска6
DOI
СостояниеОпубликовано - 1 ноя 2019

Fingerprint Подробные сведения о темах исследования «Optical Diagnosis of the Geometry of an Axisymmetric Controlled Nozzle of a Gas-Turbine Engine». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать