Аннотация
We propose an approach to identify coefficients of linear differential equations from observations of solutions with additive perturbations, based on the algebraic Fliess–Sira-Ramirez method combined with the orthogonal regression method in the space of observed functions that are transformed by convolution type integral operators. We establish the consistency of the operator-orthoregressive method and numerically analyze asymptotical properties and computational complexity of the proposed method in comparison with the asymptotically optimal variational method of identification.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 391-406 |
Число страниц | 16 |
Журнал | Journal of Mathematical Sciences (United States) |
Том | 253 |
Номер выпуска | 3 |
DOI | |
Состояние | Опубликовано - мар 2021 |
Предметные области OECD FOS+WOS
- 1.01 МАТЕМАТИКА