Operating limits and features of direct air capture on K2CO3/ZrO2 composite sorbent

Vladimir S. Derevschikov, Janna V. Veselovskaya, Anton S. Shalygin, Dmitry A. Yatsenko, Andrey Z. Sheshkovas, Oleg N. Martyanov

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

Аннотация

Potassium carbonate-based sorbents are prospective materials for direct air capture (DAC). In the present study, we examined and revealed the influence of the temperature swing adsorption (TSA) cycle conditions on the CO2 sorption properties of a novel aerogel-based K2CO3/ZrO2 sorbent in a DAC process. It was shown that the humidity and temperature drastically affect the sorption dynamic and sorption capacity of the sorbent. When a temperature at the sorption stage was 29 °C and a water vapor pressure PH2O in the feed air was 5.2 mbar (1 bar = 105 Pa), the composite material demonstrated a stable CO2 sorption capacity of 3.4% (mass). An increase in sorption temperature leads to a continuous decrease in the CO2 absorption capacity reaching a value of 0.7% (mass) at T = 80 °C. The material showed the retention of a stable CO2 sorption capacity for many cycles at each temperature in the range. Increasing PH2O in the inlet air from 5.2 to 6.8 mbar leads to instability of CO2 sorption capacity which decreases in the course of 3 consecutive TSA cycles from 1.7% to 0.8% (mass) at T = 29 °C. A further increase in air humidity only facilitates the deterioration of the CO2 sorption capacity of the material. A possible explanation for this phenomenon could be the filling of the porous system of the sorbent with solid reaction products and an aqueous solution of potassium salts, which leads to a significant slowdown in the CO2 diffusion in the composite sorbent grain. To investigate the regeneration step of the TSA cycle in situ, the macro ATR-FTIR (attenuated total reflection Fourier-transform infrared) spectroscopic imaging was applied for the first time. It was shown that the migration of carbonate-containing species over the surface of sorbent occurs during the thermal regeneration stage of the TSA cycle. The movement of the active component in the porous matrix of the sorbent can affect the sorption characteristics of the composite material. The revealed features make it possible to formulate the requirements and limitations that need to be taken into account for the practical implementation of the DAC process using the K2CO3/ZrO2 composite sorbent.

Язык оригиналаанглийский
Страницы (с-по)11-20
Число страниц10
ЖурналChinese Journal of Chemical Engineering
Том46
DOI
СостояниеОпубликовано - июн 2022

Предметные области OECD FOS+WOS

  • 1.04 ХИМИЧЕСКИЕ НАУКИ
  • 2.04 ХИМИЧЕСКИЕ ТЕХНОЛОГИИ

Fingerprint

Подробные сведения о темах исследования «Operating limits and features of direct air capture on K2CO3/ZrO2 composite sorbent». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать