On the Monotonicity of the CABARET Scheme Approximating a Scalar Conservation Law with an Alternating Characteristic Field and Convex Flux Function

N. A. Zyuzina, O. A. Kovyrkina, V. V. Ostapenko

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

Аннотация

Abstract: The monotonicity of the CABARET scheme approximating the quasi-linear scalar conservation law with a convex flux is analyzed. The monotonicity conditions for this scheme are obtained in the areas where the propagation velocity of the characteristics has a constant sign, as well as in the areas of sonic lines, sonic bands, and shock waves, where the propagation velocity of the characteristics of the approximated divergent equation changes sign. The test computations are presented that illustrate these properties of the CABARET scheme.

Язык оригиналаанглийский
Страницы (с-по)46-60
Число страниц15
ЖурналMathematical Models and Computer Simulations
Том11
Номер выпуска1
DOI
СостояниеОпубликовано - 1 янв. 2019

Fingerprint

Подробные сведения о темах исследования «On the Monotonicity of the CABARET Scheme Approximating a Scalar Conservation Law with an Alternating Characteristic Field and Convex Flux Function». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать