On the coverings of Euclidean manifolds ℬ1 and ℬ2

G. Chelnokov, M. Deryagina, A. Mednykh

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

3 Цитирования (Scopus)


There are only 10 Euclidean forms, that is flat closed three-dimensional manifolds: six are orientable and four are non-orientable. The aim of this paper is to describe all types of n-fold coverings over non-orientable Euclidean manifolds ℬ1 and ℬ2 and calculate the numbers of non-equivalent coverings of each type. We classify subgroups in the fundamental groups of ℬ1 and ℬ2 up to isomorphism and calculate the numbers of conjugated classes of each type of subgroups for index n. The manifolds ℬ1 and ℬ2 are uniquely determined among the other non-orientable forms by their homology groups Z2 X Z2 and H1B2 = Z2.

Язык оригиналаанглийский
Страницы (с-по)1558-1576
Число страниц19
ЖурналCommunications in Algebra
Номер выпуска4
СостояниеОпубликовано - 3 апр 2017


Подробные сведения о темах исследования «On the coverings of Euclidean manifolds ℬ<sub>1</sub> and ℬ<sub>2</sub>». Вместе они формируют уникальный семантический отпечаток (fingerprint).