On the Accuracy of the Discontinuous Galerkin Method in Calculation of Shock Waves

M. E. Ladonkina, O. A. Neklyudova, V. V. Ostapenko, V. F. Tishkin

Результат исследования: Научные публикации в периодических изданияхстатья

9 Цитирования (Scopus)

Аннотация

Abstract: The accuracy of the discontinuous Galerkin method of the third-order approximation on smooth solutions in the calculation of discontinuous solutions of a quasilinear hyperbolic system of conservation laws with shock waves propagating with a variable velocity is studied. As an example, the approximation of the system of conservation laws of shallow water theory is considered. On the example of this system, it is shown that, like the TVD and WENO schemes of increased order of approximation on smooth solutions, the discontinuous Galerkin method, despite its high accuracy on smooth solutions and in the localization of shock waves, reduces its order of convergence to the first order in the shock wave influence domain.

Язык оригиналаанглийский
Страницы (с-по)1344-1353
Число страниц10
ЖурналComputational Mathematics and Mathematical Physics
Том58
Номер выпуска8
DOI
СостояниеОпубликовано - 1 авг 2018

Fingerprint Подробные сведения о темах исследования «On the Accuracy of the Discontinuous Galerkin Method in Calculation of Shock Waves». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать