On Stability of the Inverted Pendulum Motion with a Vibrating Suspension Point

G. V. Demidenko, A. V. Dulepova

Результат исследования: Научные публикации в периодических изданияхстатья

Аннотация

Under study is the stability of the inverted pendulum motion whose suspension point vibrates according to a sinusoidal law along a straight line having a small angle with the vertical. Formulating and using the contracting mapping principle and the criterion of asymptotic stability in terms of solvability of a special boundary value problem for the Lyapunov differential equation, we prove that the pendulum performs stable periodic movements under sufficiently small amplitude of oscillations of the suspension point and sufficiently high frequency of oscillations.

Язык оригиналаанглийский
Страницы (с-по)607-618
Число страниц12
ЖурналJournal of Applied and Industrial Mathematics
Том12
Номер выпуска4
DOI
СостояниеОпубликовано - 1 окт 2018

Fingerprint Подробные сведения о темах исследования «On Stability of the Inverted Pendulum Motion with a Vibrating Suspension Point». Вместе они формируют уникальный семантический отпечаток (fingerprint).

  • Цитировать