TY - GEN
T1 - On simulation of no-slip condition in the method of discrete vortices
AU - Shmagunov, O. A.
PY - 2017/10/26
Y1 - 2017/10/26
N2 - When modeling flows of an incompressible fluid, it is convenient sometimes to use the method of discrete vortices (MDV), where the continuous vorticity field is approximated by a set of discrete vortex elements moving in the velocity field. The vortex elements have a clear physical interpretation, they do not require the construction of grids and are automatically adaptive, since they concentrate in the regions of greatest interest and successfully describe the flows of a non-viscous fluid. The possibility of using MDV in simulating flows of a viscous fluid was considered in the previous papers using the examples of flows past bodies with sharp edges with the no-penetration condition at solid boundaries. However, the appearance of vorticity on smooth boundaries requires the no-slip condition to be met when MDV is realized, which substantially complicates the initially simple method. In this connection, an approach is considered that allows solving the problem by simple means.
AB - When modeling flows of an incompressible fluid, it is convenient sometimes to use the method of discrete vortices (MDV), where the continuous vorticity field is approximated by a set of discrete vortex elements moving in the velocity field. The vortex elements have a clear physical interpretation, they do not require the construction of grids and are automatically adaptive, since they concentrate in the regions of greatest interest and successfully describe the flows of a non-viscous fluid. The possibility of using MDV in simulating flows of a viscous fluid was considered in the previous papers using the examples of flows past bodies with sharp edges with the no-penetration condition at solid boundaries. However, the appearance of vorticity on smooth boundaries requires the no-slip condition to be met when MDV is realized, which substantially complicates the initially simple method. In this connection, an approach is considered that allows solving the problem by simple means.
KW - JET
UR - http://www.scopus.com/inward/record.url?scp=85034236302&partnerID=8YFLogxK
U2 - 10.1063/1.5007573
DO - 10.1063/1.5007573
M3 - Conference contribution
AN - SCOPUS:85034236302
VL - 1893
T3 - AIP Conference Proceedings
BT - Proceedings of the XXV Conference on High-Energy Processes in Condensed Matter, HEPCM 2017
A2 - Fomin, null
PB - American Institute of Physics Inc.
T2 - 25th Conference on High-Energy Processes in Condensed Matter, HEPCM 2017
Y2 - 5 June 2017 through 9 June 2017
ER -