Аннотация
A finite group G is called a Schur group if any S-ring over G is associated in a natural way with a subgroup of Sym(G) that contains all right translations. We prove that the groups Z3 × Z3n, where n ≥ 1, are Schur. Modulo previously obtained results, it follows that every noncyclic Schur p-group, where p is an odd prime, is isomorphic to Z3 × Z3 × Z3 or Z3 × Z3n, n ≥ 1.
Язык оригинала | английский |
---|---|
Номер статьи | 1750045 |
Число страниц | 29 |
Журнал | Journal of Algebra and its Applications |
Том | 16 |
Номер выпуска | 3 |
DOI | |
Состояние | Опубликовано - 1 мар 2017 |