On primitive 3-generated axial algebras of Jordan type

Ilya Gorshkov, Alexey Staroletov

Результат исследования: Научные публикации в периодических изданияхстатья

Аннотация

Axial algebras of Jordan type η are commutative algebras generated by idempotents whose adjoint operators have the minimal polynomial dividing (x−1)x(x−η), where η∉{0,1} is fixed, with restrictive multiplication rules. These properties generalize the Peirce decompositions for idempotents in Jordan algebras, where [Formula presented] is replaced with η. In particular, Jordan algebras generated by idempotents are axial algebras of Jordan type [Formula presented]. If [Formula presented] then it is known that axial algebras of Jordan type η are factors of the so-called Matsuo algebras corresponding to 3-transposition groups. We call the generating idempotents axes and say that an axis is primitive if its adjoint operator has 1-dimensional 1-eigenspace. It is known that a subalgebra generated by two primitive axes has dimension at most three. The 3-generated case has been opened so far. We prove that every axial algebra of Jordan type generated by three primitive axes has dimension at most nine. If the dimension is nine and η=1/2 then we either show how to find a proper ideal in this algebra or prove that the algebra is isomorphic to certain Jordan matrix algebras.

Язык оригиналаанглийский
Страницы (с-по)74-99
Число страниц26
ЖурналJournal of Algebra
Том563
DOI
СостояниеОпубликовано - 1 дек 2020

Fingerprint Подробные сведения о темах исследования «On primitive 3-generated axial algebras of Jordan type». Вместе они формируют уникальный семантический отпечаток (fingerprint).

  • Цитировать