Аннотация
We say that a finite almost simple G with socle S is admissible (with respect to the spectrum) if G and S have the same sets of orders of elements. Let L be a finite simple linear or unitary group of dimension at least three over a field of odd characteristic. We describe admissible almost simple groups with socle L. Also we calculate the orders of elements of the coset Lτ, where τ is the inverse-transpose automorphism of L.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 1191-1222 |
Число страниц | 32 |
Журнал | Journal of Group Theory |
Том | 20 |
Номер выпуска | 6 |
DOI | |
Состояние | Опубликовано - 1 нояб. 2017 |