On numerical study of the discrete spectrum of a two-dimensional Schrödinger operator with soliton potential

A. N. Adilkhanov, I. A. Taimanov

Результат исследования: Научные публикации в периодических изданияхстатья

2 Цитирования (Scopus)

Аннотация

The discrete spectra of certain two-dimensional Schrödinger operators are numerically calculated. These operators are obtained by the Moutard transformation and have interesting spectral properties: their kernels are multi-dimensional and the deformations of potentials via the Novikov-Veselov equation (a two-dimensional generalization of the Korteweg-de Vries equation) lead to blowups. The calculations supply the numerical evidence for some statements about the integrable systems related to a 2D Schrödinger operator. The numerical scheme is applicable to a general 2D Schrödinger operator with fast decaying potential.

Язык оригиналаанглийский
Страницы (с-по)83-92
Число страниц10
ЖурналCommunications in Nonlinear Science and Numerical Simulation
Том42
DOI
СостояниеОпубликовано - 1 янв 2017

Fingerprint Подробные сведения о темах исследования «On numerical study of the discrete spectrum of a two-dimensional Schrödinger operator with soliton potential». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать