Аннотация
The discrete spectra of certain two-dimensional Schrödinger operators are numerically calculated. These operators are obtained by the Moutard transformation and have interesting spectral properties: their kernels are multi-dimensional and the deformations of potentials via the Novikov-Veselov equation (a two-dimensional generalization of the Korteweg-de Vries equation) lead to blowups. The calculations supply the numerical evidence for some statements about the integrable systems related to a 2D Schrödinger operator. The numerical scheme is applicable to a general 2D Schrödinger operator with fast decaying potential.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 83-92 |
Число страниц | 10 |
Журнал | Communications in Nonlinear Science and Numerical Simulation |
Том | 42 |
DOI | |
Состояние | Опубликовано - 1 янв 2017 |