On numerical stability of randomized projection functional algorithms

Результат исследования: Научные публикации в периодических изданияхстатья

Аннотация

In this paper, the application of randomized projection functional algorithms for numerical approximation of solutions of Fredholm equations of the second kind is discussed. Special attention is paid to the problems of numerical stability of the used orthonormal functional bases. The numerical instability of the randomized projection functional algorithm is noticed for the simple test one-dimensional equation and for the Hermite orthonormal basis.

Язык оригиналаанглийский
ЖурналCommunications in Statistics: Simulation and Computation
DOI
СостояниеОпубликовано - 15 окт 2019

    Fingerprint

Цитировать