On numerical solving a rigid inclusions problem in 2D elasticity

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

10 Цитирования (Scopus)


A 2D elastic problem for a body containing a set of bulk and thin rigid inclusions of arbitrary shapes is considered. It is assumed that rigid inclusions are bonded into elastic matrix. To state the equilibrium problem, a variational approach is used. The problem is formulated as a problem of minimization of the energy functional over the set of admissible displacements. Moreover, it is equivalent to a variational equality which holds for test functions belonging to the subspace of functions with the prescribed rigid displacement structure on the inclusions. We propose a novel algorithm of solving the equilibrium problem. The algorithm is based on reducing the original problem to a system of the Dirichlet and Neumann problems. A numerical examination is carried out to demonstrate the efficiency of the proposed technique.

Язык оригиналаанглийский
Номер статьи19
Число страниц18
ЖурналZeitschrift fur Angewandte Mathematik und Physik
Номер выпуска1
СостояниеОпубликовано - 1 февр. 2017


Подробные сведения о темах исследования «On numerical solving a rigid inclusions problem in 2D elasticity». Вместе они формируют уникальный семантический отпечаток (fingerprint).