On Multigrid Methods for Solving Two-Dimensional Boundary-Value Problems

Y. L. Gurieva, V. P. Il’in, A. V. Petukhov

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

2 Цитирования (Scopus)


Various methods for constructing algebraic multigrid type methods for solving multidimensional boundary-value problems are considered. Two-level iterative algorithms in Krylov subspaces based on approximating the Schur complement obtained by eliminating the edge nodes of the coarse grid are described on the example of two-dimensional rectangular grids. Some aspects of extending the methods proposed to the multilevel case, to nested triangular grids, and also to three-dimensional grids are discussed. A comparison with the classical multigrid methods based on using smoothing, restriction (aggregation), coarse-grid correction, and prolongation is provided. The efficiency of the algorithms suggested is demonstrated by numerical results for some model problems.

Язык оригиналаанглийский
Страницы (с-по)118-127
Число страниц10
ЖурналJournal of Mathematical Sciences (United States)
Номер выпуска2
СостояниеОпубликовано - 1 авг. 2020


Подробные сведения о темах исследования «On Multigrid Methods for Solving Two-Dimensional Boundary-Value Problems». Вместе они формируют уникальный семантический отпечаток (fingerprint).