On Moment Methods in Krylov Subspaces

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование


Moment methods in Krylov subspaces for solving symmetric systems of linear algebraic equations (SLAEs) are considered. A family of iterative algorithms is proposed based on generalized Lanczos orthogonalization with an initial vector $${{v}^{0}}$$ chosen regardless of the initial residual. By applying this approach, a series of SLAEs with the same matrix, but with different right-hand sides can be solved using a single set of basis vectors. Additionally, it is possible to implement generalized moment methods that reduce to block Krylov algorithms using a set of linearly independent guess vectors v10,..,. The performance of algorithm implementations is improved by reducing the number of matrix multiplications and applying efficient parallelization of vector operations. It is shown that the applicability of moment methods can be extended using preconditioning to various classes of algebraic systems: indefinite, incompatible, asymmetric, and complex, including non-Hermitian ones.

Язык оригиналаанглийский
Страницы (с-по)478-482
Число страниц5
ЖурналDoklady Mathematics
Номер выпуска3
СостояниеОпубликовано - нояб. 2020

Предметные области OECD FOS+WOS



Подробные сведения о темах исследования «On Moment Methods in Krylov Subspaces». Вместе они формируют уникальный семантический отпечаток (fingerprint).