On homogeneous geodesics and weakly symmetric spaces

Valeriĭ Nikolaevich Berestovskiĭ, Yuriĭ Gennadievich Nikonorov

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

5 Цитирования (Scopus)

Аннотация

In this paper, we establish a sufficient condition for a geodesic in a Riemannian manifold to be homogeneous, i.e. an orbit of an 1-parameter isometry group. As an application of this result, we provide a new proof of the fact that every weakly symmetric space is a geodesic orbit manifold, i.e. all its geodesics are homogeneous. We also study general properties of homogeneous geodesics, in particular, the structure of the closure of a given homogeneous geodesic. We present several examples where this closure is a torus of dimension ≥ 2 which is (respectively, is not) totally geodesic in the ambient manifold. Finally, we discuss homogeneous geodesics in Lie groups supplied with left-invariant Riemannian metrics.

Язык оригиналаанглийский
Страницы (с-по)575-589
Число страниц15
ЖурналAnnals of Global Analysis and Geometry
Том55
Номер выпуска3
DOI
СостояниеОпубликовано - 1 апр. 2019

Предметные области OECD FOS+WOS

  • 1.01.PQ МАТЕМАТИКА

Fingerprint

Подробные сведения о темах исследования «On homogeneous geodesics and weakly symmetric spaces». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать