On groups having the prime graph as alternating and symmetric groups

Ilya Gorshkov, Alexey Staroletov

Результат исследования: Научные публикации в периодических изданияхстатья

1 Цитирования (Scopus)

Аннотация

The prime graph Γ(G) of a finite group G is the graph whose vertex set is the set of prime divisors of |G| and in which two distinct vertices r and s are adjacent if and only if there exists an element of G of order rs. Let A n (S n ) denote the alternating (symmetric) group of degree n. We prove that if G is a finite group with Γ(G)=Γ(A n ) or Γ(G)=Γ(S n ), where n≥19, then there exists a normal subgroup K of G and an integer t such that A t ≤G(K)≤S t and |K| is divisible by at most one prime greater than n/2.

Язык оригиналаанглийский
Страницы (с-по)3905-3914
Число страниц10
ЖурналCommunications in Algebra
Том47
Номер выпуска9
DOI
СостояниеОпубликовано - 2 сен 2019

Fingerprint Подробные сведения о темах исследования «On groups having the prime graph as alternating and symmetric groups». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать