On correlation of hyperbolic volumes of fullerenes with their properties

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

2 Цитирования (Scopus)


We observe that fullerene graphs are one-skeletons of polyhedra, which can be realized with all dihedral angles equal to π/2 in a hyperbolic 3-dimensional space. One of the most important invariants of such a polyhedron is its volume. We are referring this volume as a hyperbolic volume of a fullerene. It is known that some topological indices of graphs of chemical compounds serve as strong descriptors and correlate with chemical properties. We demonstrate that hyperbolic volume of fullerenes correlates with few important topological indices and so, hyperbolic volume can serve as a chemical descriptor too. The correlation between hyperbolic volume of fullerene and its Wiener index suggested few conjectures on volumes of hyperbolic polyhedra. These conjectures are confirmed for the initial list of fullerenes.

Язык оригиналаанглийский
Страницы (с-по)150-167
Число страниц18
ЖурналComputational and Mathematical Biophysics
Номер выпуска1
СостояниеОпубликовано - 28 нояб. 2020

Предметные области OECD FOS+WOS



Подробные сведения о темах исследования «On correlation of hyperbolic volumes of fullerenes with their properties». Вместе они формируют уникальный семантический отпечаток (fingerprint).