On automorphisms of graphs and Riemann surfaces acting with fixed points

Результат исследования: Научные публикации в периодических изданияхстатья

Аннотация

Let X be a finite connected graph, possibly with multiple edges. We provide each edge of the graph by two possible orientations. An automorphism group of a graph acts harmonically if it acts freely on the set of directed edges of the graph. Following M. Baker and S. Norine define a genus g of the graph X to be the rank of the first homology group. A finite group acting harmonically on a graph of genus g is a natural discrete analogue of a finite group of automorphisms acting on a Riemann surface of genus g. In the present paper, we give a sharp upper bound for the size of cyclic group acting harmonically on a graph of genus g≥ 2 with a given number of fixed points. Similar results, for closed orientable surfaces, were obtained earlier by T. Szemberg, I. Farkas and H. M. Kra.

Язык оригиналаанглийский
Страницы (с-по)2021-2031
Число страниц11
ЖурналAnalysis and Mathematical Physics
Том9
Номер выпуска4
DOI
СостояниеОпубликовано - 1 дек 2019

Fingerprint Подробные сведения о темах исследования «On automorphisms of graphs and Riemann surfaces acting with fixed points». Вместе они формируют уникальный семантический отпечаток (fingerprint).

  • Цитировать