Ocean swell within the kinetic equation for water waves

Sergei I. Badulin, Vladimir E. Zakharov

Результат исследования: Научные публикации в периодических изданияхстатья

10 Цитирования (Scopus)

Аннотация

Results of extensive simulations of swell evolution within the duration-limited setup for the kinetic Hasselmann equation for long durations of up to 2 × 106 s are presented. Basic solutions of the theory of weak turbulence, the so-called Kolmogorov-Zakharov solutions, are shown to be relevant to the results of the simulations. Features of self-similarity of wave spectra are detailed and their impact on methods of ocean swell monitoring is discussed. Essential drop in wave energy (wave height) due to wave-wave interactions is found at the initial stages of swell evolution (on the order of 1000 km for typical parameters of the ocean swell). At longer times, wave-wave interactions are responsible for a universal angular distribution of wave spectra in a wide range of initial conditions. Weak power-law attenuation of swell within the Hasselmann equation is not consistent with results of ocean swell tracking from satellite altimetry and SAR (synthetic aperture radar) data. At the same time, the relatively fast weakening of wave-wave interactions makes the swell evolution sensitive to other effects. In particular, as shown, coupling with locally generated wind waves can force the swell to grow in relatively light winds.

Язык оригиналаанглийский
Страницы (с-по)237-253
Число страниц17
ЖурналNonlinear Processes in Geophysics
Том24
Номер выпуска2
DOI
СостояниеОпубликовано - 6 июн 2017

Fingerprint Подробные сведения о темах исследования «Ocean swell within the kinetic equation for water waves». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать