Numerically statistical investigation of the partly super-exponential growth rate in the COVID-19 pandemic (throughout the world)

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

Аннотация

A number of particles in a multiplying medium under rather general conditions is asymptotically exponential with respect to time t with the parameter λ, i.e., with the index of power λt. If the medium is random, then the parameter λ is the random variable. To estimate the temporal asymptotics of the mean particles number (via the medium realizations), it is possible to average the exponential function via the corresponding distribution. Assuming that this distribution is Gaussian, the super-exponential estimate of the mean particle number could be obtained and expressed by the exponent with the index of power tEλ + t2Dλ/2. The application of this new formula to investigation of the COVID-19 pandemic is performed.

Язык оригиналаанглийский
Страницы (с-по)877-879
Число страниц3
ЖурналJournal of Inverse and Ill-Posed Problems
Том28
Номер выпуска6
Ранняя дата в режиме онлайн1 сен 2020
DOI
СостояниеОпубликовано - 1 дек 2020

Fingerprint

Подробные сведения о темах исследования «Numerically statistical investigation of the partly super-exponential growth rate in the COVID-19 pandemic (throughout the world)». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать