@inproceedings{b548ec4b7e3746e9a5cc595e38019c3f,
title = "Numerical simulation of fluid flow in a rotational bioreactor",
abstract = "Application of scaffold technology for the problem of bone tissue regeneration has great prospects in modern medicine. The influence of fluid shear stress on stem cells cultivation and its differentiation into osteoblasts is the subject of intensive research. Mathematical modeling of fluid flow in bioreactor allowed us to determine the structure of flow and estimate the level of mechanical stress on cells. The series of computations for different rotation frequencies (0.083, 0.124, 0.167, 0.2 and 0.233 Hz) was performed for the laminar flow regime approximation. It was shown that the Taylor vortices in the gap between the cylinders qualitatively change the distribution of static pressure and shear stress in the region of vortices connection. It was shown that an increase in the rotation frequency leads to an increase of the unevenness in distribution of the above mentioned functions. The obtained shear stress and static pressure dependence on the rotational frequency make it possible to choose the operating mode of the reactor depending on the provided requirements. It was shown that in the range of rotation frequencies chosen in this work (0.083 < f < 0.233 Hz), the shear stress does not exceed the known literature data (0.002-0.1 Pa).",
author = "Ganimedov, {V. L.} and Papaeva, {E. O.} and Maslov, {N. A.} and Larionov, {P. M.}",
year = "2017",
month = oct,
day = "26",
doi = "10.1063/1.5007464",
language = "English",
volume = "1893",
series = "AIP Conference Proceedings",
publisher = "American Institute of Physics Inc.",
editor = "Fomin",
booktitle = "Proceedings of the XXV Conference on High-Energy Processes in Condensed Matter, HEPCM 2017",
note = "25th Conference on High-Energy Processes in Condensed Matter, HEPCM 2017 ; Conference date: 05-06-2017 Through 09-06-2017",
}