Numerical integration using integrals over hyperplane sections of simplices in a triangulation of a polytope

Allal Guessab, Boris Semisalov

Результат исследования: Научные публикации в периодических изданияхстатья

1 Цитирования (Scopus)

Аннотация

In this paper, we consider the problem of approximating a definite integral of a given function f when, rather than its values at some points, a number of integrals of f over some hyperplane sections of simplices in a triangulation of a polytope P in (Formula presented.) are only available. We present several new families of “extended” integration formulas, all of which are a weighted sum of integrals over some hyperplane sections of simplices, and which contain in a special case of our result multivariate analogues of the midpoint rule, the trapezoidal rule and the Simpson’s rule. Along with an efficient algorithm for their implementations, several illustrative numerical examples are provided comparing these cubature formulas among themselves. The paper also presents the best possible explicit constants for their approximation errors. We perform numerical tests which allow the comparison of the new cubature formulas. Finally, we will discuss a conjecture suggested by the numerical results.

Язык оригиналаанглийский
Страницы (с-по)613-660
Число страниц48
ЖурналBIT Numerical Mathematics
Том58
Номер выпуска3
DOI
СостояниеОпубликовано - 1 сен 2018

Fingerprint Подробные сведения о темах исследования «Numerical integration using integrals over hyperplane sections of simplices in a triangulation of a polytope». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать