Numerical Comparison of the Adjoint Problem-based and Derivative-free Algorithms on the Coefficient Identification Problem for a Production-Loss Model

Alexey Penenko, Viktoria Konopleva, Aleksandr Bobrovskikh

Результат исследования: Публикации в книгах, отчётах, сборниках, трудах конференцийстатья в сборнике материалов конференциинаучнаярецензирование

Аннотация

Coefficient identification problems for non-stationary production-loss models are considered. Such models are widely used in chemical, environmental, economic, and biological process studies. The objective of the work is to numerically compare standard derivative-free and gradient-based optimization algorithms accuracy to that of the algorithm consisting of solving the quasi-linear matrix equation with the sensitivity operator. The matrix equation is solved by means of the Newton-Kantorovich-type algorithm with the truncated SVD regularized matrix inversion. Both gradient and sensitivity operator-based algorithms use adjoint problems. The algorithms are compared on the inverse modeling scenario for the antioxidant system of a plant cell. In the scenario, the parameters of the model with rational production-loss operators have to be identified by the state function measurements with the regular time steps. In the numerical experiments, the adjoint problem-based algorithms showed almost the same accuracy, while derivative-free algorithms were less accurate. The largest errors of the latter were obtained on the model coefficients that were not identified by the adjoint problem-based algorithms.

Язык оригиналаанглийский
Название основной публикацииProceedings - 2021 17th International Asian School-Seminar "Optimization Problems of Complex Systems", OPCS 2021
ИздательInstitute of Electrical and Electronics Engineers Inc.
Страницы78-83
Число страниц6
ISBN (электронное издание)978-1-6654-0562-1
DOI
СостояниеОпубликовано - 2021
Событие17th International Asian School-Seminar "Optimization Problems of Complex Systems", OPCS 2021 - Moscow, Российская Федерация
Продолжительность: 13 сен 202117 сен 2021

Серия публикаций

НазваниеProceedings - 2021 17th International Asian School-Seminar "Optimization Problems of Complex Systems", OPCS 2021

Конференция

Конференция17th International Asian School-Seminar "Optimization Problems of Complex Systems", OPCS 2021
СтранаРоссийская Федерация
ГородMoscow
Период13.09.202117.09.2021

Предметные области OECD FOS+WOS

  • 1.01 МАТЕМАТИКА

Fingerprint

Подробные сведения о темах исследования «Numerical Comparison of the Adjoint Problem-based and Derivative-free Algorithms on the Coefficient Identification Problem for a Production-Loss Model». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать