NO + H2 reaction over Pd(110): TPD, TPR and DFT study

Anna A. Bryliakova, Andrey V. Matveev, Vladimir M. Tapilin, Vladimir V. Gorodetskii

    Результат исследования: Научные публикации в периодических изданияхстатья


    Temperature-programming desorption (TPD) and temperature-programmed reaction (TPR) have been applied to study the reduction of 15NO by deuterium on a Pd(110) surface. TPR results show that the reaction occurs in the autocatalytic regime of surface explosion with the rate-limiting step of 15NOads dissociation into highly reactive Oads and 15Nads atoms. The steady-state reaction leads to formation of 15N2, D2O, 15ND3 and 15N2O products. The phenomena of a reaction rate hysteresis observed during a heating-cooling cycle can be attributed to accumulation of 15NOads at low temperatures followed by surface explosion at T ∼ 490 K. The binding energies and structural parameters of species involved in the NO + H2 reaction over Pd(110) have been calculated by the DFT technique, and plausible reaction pathways have been considered. NO dissociation from the most stable short bridge site (Eb = −1.94 eV) occurs via the intermediates in on-top and long bridge modes with lower binding energy (Eb = −1.31 to 1.65 eV). The energy of transition states reaches 0.2–0.26 eV over energy of NO in a gas phase, which confirms the rate-limiting role of NO dissociation. It has been demonstrated that OHads-group formation is the rate-limiting step of water molecule generation. Subsequent H2O formation occurs via disproportionation of the OHads intermediates.

    Язык оригиналаанглийский
    Страницы (с-по)53-62
    Число страниц10
    ЖурналMolecular Catalysis
    СостояниеОпубликовано - 1 апр 2018

    Fingerprint Подробные сведения о темах исследования «NO + H<sub>2</sub> reaction over Pd(110): TPD, TPR and DFT study». Вместе они формируют уникальный семантический отпечаток (fingerprint).

  • Цитировать

    Bryliakova, A. A., Matveev, A. V., Tapilin, V. M., & Gorodetskii, V. V. (2018). NO + H2 reaction over Pd(110): TPD, TPR and DFT study. Molecular Catalysis, 448, 53-62.