Noble metal speciations in hydrothermal sulphides

Ilya Vikentyev, Olga Vikent’eva, Eugenia Tyukova, Maximilian Nikolsky, Julia Ivanova, Nina Sidorova, Dmitry Tonkacheev, Vera Abramova, Vyacheslav Blokov, Adelina Spirina, Diana Borisova, Galina Palyanova

Результат исследования: Научные публикации в периодических изданияхобзорная статьярецензирование

1 Цитирования (Scopus)


A significant part of the primary gold reserves in the world is contained in sulphide ores, many types of which are refractory in gold processing. The deposits of refractory sulphide ores will be the main potential source of gold production in the future. The refractory gold and silver in sulphide ores can be associated with micro-and nano-sized inclusions of Au and Ag minerals as well as isomorphous, adsorbed and other species of noble metals (NM) not thoroughly investigated. For gold and gold-bearing deposits of the Urals, distribution and forms of NM were studied in base metal sulphides by laser ablation-inductively coupled plasma mass spectrometry and by neutron activation analysis. Composition of arsenopyrite and As-pyrite, proper Au and Ag minerals were identified using electron probe microanalysis. The ratio of various forms of invisible gold—which includes nanoparticles and chemically bound gold—in sulphides is discussed. Observations were also performed on about 120 synthetic crystals of NM-doped sphalerite and greenockite. In VMS ores with increasing metamorphism, CAu and CAg in the major sulphides (sphalerite, chalcopyrite, pyrite) generally decrease. A portion of invisible gold also decreases —from ~65–85% to ~35–60% of the total Au. As a result of recrystallisation of ores, the invisible gold is enlarged and passes into the visible state as native gold, Au-Ag tellurides and sulphides. In the gold deposits of the Urals, the portion of invisible gold is usually <30% of the bulk Au.

Язык оригиналаанглийский
Номер статьи488
Номер выпуска5
СостояниеОпубликовано - мая 2021

Предметные области OECD FOS+WOS



Подробные сведения о темах исследования «Noble metal speciations in hydrothermal sulphides». Вместе они формируют уникальный семантический отпечаток (fingerprint).