New skein invariants of links

Louis H. Kauffman, Sofia Lambropoulou

Результат исследования: Научные публикации в периодических изданияхстатья

Аннотация

We study new skein invariants of links based on a procedure where we first apply a given skein relation only to crossings of distinct components, so as to produce collections of unlinked knots. We then evaluate the resulting knots using the given invariant. A skein invariant can be computed on each link solely by the use of skein relations and a set of initial conditions. The new procedure, remarkably, leads to generalizations of the known skein invariants. We make skein invariants of classical links, H[R], K[Q] and D[T], based on the invariants of knots, R, Q and T, denoting the regular isotopy version of the Homflypt polynomial, the Kauffman polynomial and the Dubrovnik polynomial. We provide skein theoretic proofs of the well-definedness of these invariants. These invariants are also reformulated into summations of the generating invariants (R, Q, T) on sublinks of a given link L, obtained by partitioning L into collections of sublinks. These summations exhibit the tight and surprising relationship between our generalized skein-theoretic procedure and the structure of sublinks of a given link.

Язык оригиналаанглийский
Номер статьи1940018
Число страниц53
ЖурналJournal of Knot Theory and its Ramifications
Том28
Номер выпуска13
DOI
СостояниеОпубликовано - 1 ноя 2019

Fingerprint Подробные сведения о темах исследования «New skein invariants of links». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать