New semi-analytical solution of the problem of vapor bubble growth in superheated liquid

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

Аннотация

This paper presents a mathematical model of the vapor bubble growth in an initially uniformly superheated liquid. This model takes into account simultaneously the dynamic and thermal effects and includes the well-known classical equations: the Rayleigh equation and the heat conductivity equation, written with consideration of specifics associated with the process of liquid evaporation. We have obtained a semi-analytical solution to the problem, which consists in reducing the initial boundary value problem with a moving boundary to a system of ordinary differential equations of the first order, valid in a wide range of operating parameters of the process at all its stages: from inertial to thermal, including the transitional one. It is shown that at large times this solution is consistent with the known solutions of other authors obtained in the framework of the energy thermal model, in particular, for the high Jacob numbers, it is consistent with the Plesset–Zwick solution.

Язык оригиналаанглийский
Номер статьи16526
Число страниц8
ЖурналScientific Reports
Том10
Номер выпуска1
DOI
СостояниеОпубликовано - 1 дек 2020

Fingerprint Подробные сведения о темах исследования «New semi-analytical solution of the problem of vapor bubble growth in superheated liquid». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать