Nested alternating - triangular incomplete factorization methods

S. V. Gololobov, V. P. Il'in, A. M. Krylov, A. V. Petukhov

Результат исследования: Научные публикации в периодических изданияхстатья по материалам конференциирецензирование

Аннотация

We consider several versions of incomplete nested factorization methods for solving the large systems of linear algebraic equations (SLAEs) with sparse matrices which arise in grid approximations of the multi-dimensional boundary value problems. Our approach is based on the two-level iterative process in the Krylov subspaces in 3D case. Corresponding hierarchical incomplete factorization is applied to the block tridiagonal matrix structure. At the upper level, the diagonal blocks correspond to 2D grid subproblems which are factorized in the line-by-line framework. Instead of the low and upper triangular matrix factors, the alternating triangular matrices are used, which allows to apply the parallel counter sweeping approaches. The improvement of preconditioners is made by means of generalized compensation principles. To solve SLAE iterative conjugate direction methods in Krylov subspaces are applied. The efficiency of the proposed methods are demonstrated on the set of representative test problems.

Язык оригиналаанглийский
Номер статьи012003
ЖурналJournal of Physics: Conference Series
Том1715
Номер выпуска1
DOI
СостояниеОпубликовано - 4 янв 2021
СобытиеInternational Conference on Marchuk Scientific Readings 2020, MSR 2020 - Akademgorodok, Novosibirsk, Российская Федерация
Продолжительность: 19 окт 202023 окт 2020

Fingerprint Подробные сведения о темах исследования «Nested alternating - triangular incomplete factorization methods». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать