Multidimensional conservation laws and integrable systems II

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

Аннотация

In this paper we continue investigation of a new property of two-dimensional integrable systems—existence of infinitely many local three-dimensional conservation laws for pairs of integrable two-dimensional commuting flows. Multicomponent two-dimensional hydrodynamic reductions of the Mikhalëv equation are considered. Infinitely many three-dimensional local conservation laws for the Korteweg–de Vries pair of commuting flows are constructed. Thus, we show that pairs of commuting dispersive two-dimensional systems also possess infinitely many local three-dimensional conservation laws. They can be used for averaging of multiparametric families of solutions to the Mikhalëv equation.

Язык оригиналаанглийский
ЖурналStudies in Applied Mathematics
DOI
СостояниеОпубликовано - 13 окт 2021

Предметные области OECD FOS+WOS

  • 1.01 МАТЕМАТИКА

Fingerprint

Подробные сведения о темах исследования «Multidimensional conservation laws and integrable systems II». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать